Appendix C - Results of Research Reviewed Compared to Evaluation Criteria

Research Reviewed Type of Nanotech	Evaluation Criteria Sub-Type	Sensitivity	Selectivity	Inst Det	Simult Det	Portable	Reusable	Varied Env	Det in	Det in Air	Organic	Gas	Metal	Biological	Radiological	Physical
Electrochemical	Film - 2D AuNP Array ¹	X	X	X	X	X	X			X	X					
Electrochemical	Film - Au/PtNP/Graphene ²	X	X	X				X		X	X					
Electrochemical	Film - AuNP ³	X	X	X		X	X				X					
Electrochemical	Film - AuNP ⁴	X	X	X		X					X					
Electrochemical	Film - AuNP Interdig Capacitive ⁵	X	X	X	X									X		
Electrochemical	Film - AuNP Ligands ⁶	X	X					X		X	X					
Electrochemical	Film - AuNP Ligands ⁷					X	X	X		X	X					
Electrochemical	Film - AuNP SW Stripping ⁸	X	X	X	X			X	X				X			
Electrochemical	Film - CuNP Monolayer-Capped ⁹	X					X	X		X	X					
Electrochemical	Film - Dodecane Core/Shell ¹⁰						X	X			X					
Electrochemical	Film - MIP-NPGL ¹¹	X	X	X	X	X	X		X	X	X	X	X	X		
Electrochemical	Film - MCNPs ¹²	X	X	X			X			X				X		
Electrochemical	Film - SAMMS-SWASV ¹³	X	X	X	X								X			
Electrochemical	Film - Trithiol Capped ¹⁴	X									X					
Electrochemical	Film - Tyrosine/AuNP/T-NH2 ¹⁵	X	X	X				X	X		X					
Electrochemical	Film - Vapor Droplet Interaction 16	X	X					X		X	X					
Electrochemical	Film - Vapor IDA Self-Assem	X						X								
Electrochemical	Nanorod - AuNP Fiber Optic ¹⁸	X	X				X	21	X			X				
Electrochemical	Nanotube - Single Walled Carbon ¹⁹	X	X			0.4	Λ		Λ		X	X				
Electrochemical	Nanowire - Silicon ²⁰	X	X	X		X	X	X		X	X	X		X		
Electrochemical	Nanowire - Silicon ²¹	X	X	X		A	X	21	///	21	∠1	A		∠1		
Electrochemical	Nanowire - Silicon (B-Doped) ²²	X	X	X			X		X),			X	X		
Electrochemical	Nanowire - Silicon V Array Porous ²³	X	X	X	X	X	X		Λ		X		Λ	Λ		
Electrochemical	Nanowire - ZnO on ITO SiO/C ²⁴	X	А	Λ	Λ	Λ	Λ			X	X					
Electrochemical	Thermal Actuator Si/Cr/Au Wafer ²⁵	X	X	X		X	X			A	A					X
Electrochemical	Film - AuNPs Lateral Flow Strip ²⁶	21	21	21		21	21		X		X					21
Electrochemical	Film - Cat-Spec Funct ²⁷	яχ	WE						X		X					
Optical	Colorimetric ²⁸								X		21		X			
Optical	Colorimetric - Agg Direct Sen ²⁹							X	X		X		21			
Optical	Colorimetric - Immunoassay Strip ³⁰							A	X		∠1			X		
Optical	Colorimetric - Ligand Based ³¹	X	X	X					X		X		X	∠1		
Optical	Colorimetric - Ligand Based ³²	X	X	X				X	X		X		A			
Optical	Colorimetric - Ligand Based ³³	X	X	X				2X	21	X	∠1		X			
Optical	Colorimetric - Ligand Based ³⁴	X	X	X		X			X	Λ			Λ	X		
Optical	Colorimetric - Lig Cysteine AuNP ³⁵	Λ	Λ	Λ		Λ			X					X		
Optical	Colorimetric - Non-crosslinking ³⁶								X		X			∠1		
Optical	Colorimetric - AuNP Conj Polymer ³⁷	X		X		X			X		X		X	X		
Optical	Colorimetric Aptamer AuNP Conj ³⁸	X	X	X		2			X		2		∠1	X		
Optical	Colorimetric - Crosslinking ³⁹		-/1	78					X		X					
Optical	Optical Sensor ⁴⁰								X		/	X				
Optical	Optical Sensor - SS DNA ⁴¹	X	X						X			21	X			
Optical	Optical Tweezers - Pos Track	X	X						X				A			
Optical	SERS - AgNP ⁴³	X	X	X	X	X			X					X		
Optical	SERS - AgNP - MIP ⁴⁴	X		X	-A X	/ A			4 k		X			2 %		
Optical	SERS - AuNP substrate ⁴⁵	X	X	/ X					X		X					
Optical	SERS - Ga2O3/Ag Nanowire ⁴⁶	X	7						X		X					
Optical	SERS - Optical SiO2 -AuNP ⁴⁷	X	X	X								X				
Optical	SPR - Capped AuNPs ⁴⁸	X	X			X										

- "NRL SiN-VAPOR Technology," Naval-Technology, August 19, 2013. http://www.naval-technology.com/news/newsnrl-develops-sinvapor-technology. (accessed October 7 2015).
- Nilsson, Patrik, Axel Eriksson, Maria Messing, Christina Isaxon, Maria Hedmer, Håkan Tinnerberg, Bengt Meuller et al. "Laser Vaporizer-AMS for exposure assessment and detection of airborne engineered metal nanoparticles." In *European Aerosol Conference* 2012. 2012.
- Occupational Safety and Health Administration. "OSHA 3360 Reflections on OSHA's History." U.S. Department of Labor. January 2009. https://www.osha.gov/history/OSHA _HISTORY_3360s.pdf (accessed 10 March 2015).
- . "OSHA Occupational Chemical Database." U.S. Department of Labor. https://www.osha.gov/chemicaldata/#target. (accessed 10 March 2015).
- ------. "Ergonomics: The Study of Work OSHA 3125 (Revised). United States Department of Labor, 2000. https://www.osha.gov/ Publications/osha3125.pdf (accessed 23 September 2015).
- ——. "OSHA Safety and Health Topics: Confined Spaces" United States Department of Labor. https://www.osha.gov/SLTC/confinedspaces/ (accessed 23 September 2015).
- Ohlinger, Alexander, Andras Deak, Andrey A. Lutich, and Jochen Feldmann. "Optically trapped gold nanoparticle enables listening at the microscale." *Physical review letters* 108, no. 1 (2012): 18-101.
- Pedersen, David B., and E. J. Duncan. Surface Plasmon Resonance Spectroscopy of Gold Nanoparticle-Coated Substrates: Use as an Indicator of Exposure to Chemical Warfare Simulants. No. DRDC-SUFFIELD-TR-2005-109. Defence Research and Development Suffield (Alberta), 2005.
- Pedersen, D. S., and S. Wang. *Current flow through two dimensional arrays of metal nanoparticles as a novel sensor platform.* No. DRDC-SUFFIELD-TM-2009-068. Defence Research and Development Suffield (Alberta), 2009.
- Physics Central. "The Golden Age of Gold". American Physical Society. http://www.physicscentral.com/explore/action/gold.cfm (accessed 17 September 2015).
- Phys.org. "Better Bomb-Sniffing Technology with New Detector Material." *Phys.org*, November 4 2014. http://phys.org/news/2014-11-bomb-sniffing-technology-detector-material.html. (accessed 17 September 2015).

- ——. "New Device Warns Workers of High Levels of Airborne Metals in Minutes Rather Than Weeks." *Phys.org*, May 31, 2012. http://phys.org/news/2012-05-device-workers-highairborne-metals.html. (accessed 17 September 2015).
- Prokes, S. M., O. J. Glembocki, and R. W. Rendell. *Highly Efficient Surface Enhanced Raman Scattering (SERS) Nanowire/Ag Composites*. Naval Research Lab, Washington, DC, Electronics Science and Technology Division, 2007.
- Pu, Mingo. "Scientists Found a Natural Nanostructure to Control the Flow of Light." Nanotechnology Now, October 4, 2015. http://www.nanotechnow.com/news.cgi?story_id=52337. (accessed 10 September 2015).
- Quest® Technologies. "Basic Sound Level Meters" Raeco Rents Products Page. http://www.raecorents.com/products/noise/3M-Quest-2200-SLM/3M-basic-sound-level-meter-bro.pdf. (accessed 11 October 2015).
- RADēCO. "US Air Force and National Guard Air Sampling Kit". Products. http://www.radecoinc.com/products/usaf-kit. (accessed 11 October 2015).
- Reusch, William. "Visible and Ultraviolet Spectroscopy." Michigan State University Department of Chemistry. http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/UV-vis/spectrum.htm. (accessed 22 September 2015).
- Rowe, Aaron. "The 9 Best Nanotechnology-Powered Products." *Discover Magazine*, June 29, 2010. http://discovermagazine.com/galleries/zen-photo/n/nanotech-products. (accessed 17 September 2015).
- ScienceDaily. "Chip-Based Technology Enables Reliable Direct Detection of Ebola Virus." *ScienceDaily.com*, 25 September 2015. http://www.sciencedaily.com/releases/2015/09/150925085341.htm. (accessed 10 October 2015).
- SKC. "Air Sampling Pumps to 5 L/min". Sampling Pumps. http://www.skcinc.com/catalog/index.php?cPath=100000000_101000000. (accessed 11 October 2015).
- Smardzewski, R. R., N. L. Jarvis, A. W. Snow, and H. Wohltjen. *Nanoelectronic chemical sensors: theory and experiment*. Geo-Centers Inc. Aberdeen Proving Ground, MD, 2004.
- Smiths Detection. "HazmatID Elite: Handheld FT-IR Chemical Identifier." Products and Solutions: Chemical Identification. http://www.smithsdetection.com/en/products-solutions/chemical-identification/57-chemical-identification/hazmatid-elite.html#.ViRDwfmrSUk. (accessed 11 October 2015).
- Thermo Scientific. "FirstDefenderTM RM Chemical Identification System." Products. http://www.thermoscientific.com/en/product/firstdefender-rm-chemical-identification-system.html. (accessed 11 October 2015).

- Tisch, Ulrike, and Hossam Haick. "Arrays of chemisensitive monolayer-capped metallic nanoparticles for diagnostic breath testing." *Reviews in Chemical Engineering* 26, no. 5-6 (2010): 171-179.
- TSI. "IAQ-CALC Indoor Air Quality Meter 7545" Products. http://www.tsi.com/iaq-calc-indoor-air-quality-meters-7545/ (accessed 11 October 2015).
- United States Army Technical Manual (TM) 3-6665-319-10, Water Testing Kit, Chemical Agents: M272 (NSN 6665-01-134-0885), 30 November 1983.
- United States Environmental Protection Agency. "Drinking Water Contaminants." http://water.epa.gov/drink/contaminants/index.cfm#List. (accessed 2 September 2015).
 ——. "Laws and Executive Orders." http://www2.epa.gov/laws-regulations/laws-and-executive-orders. (accessed 10 March 2015).
 ——. "Our Mission and What We Do." http://www2.epa.gov/laws-regulations/our-mission-and-what-we-do. (accessed 10 March 2015).
 ——. "Summary of the Occupational Safety and Health Act 29 USC §651 et seq. (1970)." http://www2.epa.gov/laws-regulations/summary-occupational-safety-and-health-act. (accessed 10 March 2015).
 ——. "Unregulated Contaminant Monitoring Program." http://water.epa.gov/lawsregs/rulesregs/sdwa/ucmr/index.cfm. (accessed 2 September 2015).
- ———. "When and How was the EPA Created?" http://publicaccess.supportportal.com/link/portal/23002/23012/Article/23723/When-and-how-was-the-EPA-created (accessed 10 March 2015).
- United States National Nanotechnology Initiative. "Benefits and Applications." http://www.nano.gov/you/nanotechnology-benefits (accessed 1 Febuary 2015).
- United States Navy. "Information Paper: Hand Held Assay (HHA)." Navy Environmental and Preventive Medicine Unit TWO. http://www.med.navy.mil/sites/nepmu2/Documents/lab/Hand%20Held%20Assays%20(H HA).pdf. (accessed October 10, 2015).
- VAPORSENS. *Home Page*. http://www.vaporsens.com/ (accessed 7 October 2015).
- VAPORSENS. *Product: VSENS Page*. http://www.vaporsens.com/gas-vapor-sensors (accessed 7 October 2015).

- VAPORSENS. *Technology: Sensors Page*. http://www.vaporsens.com/sensors/ (accessed October 7, 2015).
- Wallace, Lance, and John Toon. "Using Technology to Detect Gamma Radiation." Georgia Tech Research Institute. http://www.gtri.gatech.edu/casestudy/using-nanotechnology-detect-gamma-radiation (accessed 7 October 2015).
- Wang, Chao, and Chenxu Yu. "Detection of chemical pollutants in water using gold nanoparticles as sensors: a review." *Reviews in Analytical Chemistry* 32, no. 1 (2013): 1-14.
- Wang, Na, Hai-Yan Zhao, Xue-Ping Ji, Xian-Rui Li, and Bei-Bei Wang. "Gold nanoparticles-enhanced bisphenol A electrochemical biosensor based on tyrosinase immobilized onto self-assembled monolayers-modified gold electrode." *Chinese Chemical Letters* 25, no. 5 (2014): 720-722.
- Wang, Jinfen, Chao Bian, Jianhua Tong, Jizhou Sun, and Shanhong Xia. "Simultaneous detection of copper, lead and zinc on tin film/gold nanoparticles/gold microelectrode by square wave stripping voltammetry." *Electroanalysis* 24, no. 8 (2012): 1783-1790.
- Webb, R.C., R.M. Pielak, P. Bastien, J. Ayers, J. Niityynen, and J. Kurniawan. "Thermal Transport Characteristics of Human Skin Measured in Vivo Using Ultrathin Conformal Arrays of Thermal Sensors and Actuators." *PLoS ONE*, 2015, no. 10, 118-131.
- Xia, Fan, Xiaolei Zuo, Renqiang Yang, Yi Xiao, Di Kang, Alexis Vallée-Bélisle, Xiong Gong et al. "Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes." *Proceedings of the National Academy of Sciences* 107, no. 24 (2010): 10837-10841.
- Zemanian, Thomas S., and Yuehe Lin. Nano-Engineered Electrochemical Sensors for Monitoring of Toxic Metals in Groundwater: Development of Novel Square Wave Anodic Stripping Voltammetry Electrodes Using Self Assembled Monolayers on Mesoporous Supports. PNNL-16445. Pacific Northwest National Lab Richland, WA, 2007.
- Zhong, Chuan-Jian, Derrick M. Mott, Peter N. Njoki, Lingyan Y. Wang, Jin Luo, and George W. Miller. *Synthesis and Thin Film Assembly of Copper Nanoparticles for Sensing Contaminants in Aircraft Cabins*. State University of New York at Binghamton Research Foundation, 2008.